אורח מצב צפייה מבחן: משפטים: גבהים במשולש
מספר שאלות: 15
ניקוד כולל: 100.05 נק'
שאלה 1
6.67 נק'

📏 הגדרה - גובה במשולש:
גובה במשולש הוא קטע _____ מקדקוד
לצלע _____ (או להמשכה).

הסבר:

💡 הסבר מפורט:

שלב 1: הגדרת גובה 🔍

גובה במשולש 📏
קטע ניצב (זווית 90°)

מקדקוד

לצלע הנגדית

שלב 2: דוגמה ויזואלית 📊

גובה (ניצב)90°DABCBC (צלע נגדית ל-A)
🔹 הגובה ניצב לצלע BC
🔹 יוצא מקדקוד A
🔹 BC היא הצלע הנגדית ל-A

שלב 3: מאפיינים 💭

תכונות גובה:

תמיד ניצב (זווית 90°) לצלע
✅ יוצא מקדקוד
✅ מגיע לצלע הנגדית (או להמשכה)
✅ בכל משולש יש 3 גבהים

גובה = "הניצב הקצר ביותר"

שלב 4: למה "נגדית"? 🔺

צלע נגדית:

הצלע שמול הקדקוד

לדוגמה:
🔹 A מול → BC
🔹 B מול → AC
🔹 C מול → AB

תשובה: ניצב - הנגדית

שאלה 2
6.67 נק'

מספר גבהים:
כמה גבהים יש בכל משולש?

הסבר:

💡 הסבר מפורט:

שלב 1: כמה גבהים? 🔍

3 גבהים ✨
לכל משולש יש

3 גבהים

גובה אחד מכל קדקוד

שלב 2: דוגמה במשולש 📊

גובה 1גובה 2גובה 3HABC3 גבהים נפגשים ב-H

שלב 3: הסבר לוגי 💭

למה 3?

✅ למשולש יש 3 קדקודים
✅ מכל קדקוד אפשר לצייר גובה אחד לצלע הנגדית
✅ לכן: 3 קדקודים = 3 גבהים

זה נכון לכל משולש!

שלב 4: טבלה מסודרת 📐

גובהמקדקודלצלע
גובה 1ABC
גובה 2BAC
גובה 3CAB

תשובה: 3 גבהים

שאלה 3
6.67 נק'

🎯 נקודת חיתוך הגבהים:
שלושת הגבהים במשולש נחתכים ב_____
הנקראת _____.

הסבר:

💡 הסבר מפורט:

שלב 1: המשפט 🔍

משפט הגבהים ✨
שלושת הגבהים במשולש

נחתכים בנקודה אחת

הנקראת: אורתוצנטר (H)

שלב 2: דוגמה ויזואלית 📊

HאורתוצנטרABCכל 3 הגבהים נפגשים ב-H!

שלב 3: שם מיוחד 💭

נקודת החיתוך נקראת:

אורתוצנטר
(Orthocenter)

מסומנת באות H

שלב 4: טבלת נקודות מיוחדות 🌟

נקודהחיתוך שלשם
Gתיכוניםמרכז כובד
Iחוצי זוויותמרכז מעגל חסום
Oאנכים אמצעייםמרכז מעגל חוסם
Hגבהיםאורתוצנטר

תשובה: נקודה אחת - אורתוצנטר (H)

שאלה 4
6.67 נק'

📐 גובה ושטח:
נוסחת שטח משולש היא:
שטח = ½ × _____ × _____

הסבר:

💡 הסבר מפורט:

שלב 1: נוסחת השטח 🔍

נוסחת שטח משולש ✨
S = ½ × בסיס × גובה

שלב 2: דוגמה ויזואלית 📊

בסיס = bגובה = hABCS = ½ × b × h

שלב 3: דוגמה מספרית 💭

דוגמה:

בסיס = 10 ס"מ
גובה = 6 ס"מ

שטח = ½ × 10 × 6
שטח = ½ × 60
שטח = 30 ס"מ²

שלב 4: למה חצי? 🤔

הסבר:

🔹 אם נשלים את המשולש למלבן:
🔹 שטח המלבן = בסיס × גובה
🔹 המשולש הוא חצי מהמלבן
🔹 לכן: שטח משולש = ½ × בסיס × גובה

תשובה: בסיס × גובה

שאלה 5
6.67 נק'

🔢 תרגיל שטח:
משולש שבסיסו 12 ס"מ וגובהו 8 ס"מ.
מה שטח המשולש?

הסבר:

💡 הסבר מפורט:

שלב 1: הנתונים 🔍

נתון:
🔹 בסיס = 12 ס"מ
🔹 גובה = 8 ס"מ

מבוקש:
🔹 שטח המשולש = ?

שלב 2: דוגמה ויזואלית 📊

12 ס"מ8 ס"משטח = ?

שלב 3: הנוסחה 📐

נוסחה:

S = ½ × בסיס × גובה

S = ½ × 12 × 8

שלב 4: חישוב ✍️

S = ½ × 12 × 8

S = ½ × 96

S = 48 ס"מ²

שלב 5: בדיקה 🔍

בדיקה:
🔹 בסיס × גובה = 12 × 8 = 96
🔹 חצי מזה = 96 ÷ 2 = 48 ✓
🔹 התשובה נכונה!

תשובה: 48 ס"מ²

שאלה 6
6.67 נק'

🔺 משולש ישר זווית:
במשולש ישר זווית, הגובה ליתר הוא:

הסבר:

💡 הסבר מפורט:

שלב 1: משולש ישר זווית 🔍

משולש ישר זווית ✨
יש זווית של 90°

שני שוקים + יתר

שלב 2: דוגמה ויזואלית 📊

יתר (AC)גובה90°DBACהגובה ניצב ליתר

שלב 3: הסבר 💭

במשולש ישר זווית:

🔹 הזווית הישרה היא ב-B
🔹 היתר הוא AC (הצלע הארוכה)
🔹 הגובה מ-B ל-AC ניצב ליתר
🔹 זה הגובה הייחודי ליתר!

שני השוקים הם גבהים לשוקים האחרים

שלב 4: מקרה מיוחד 🌟

במשולש ישר זווית:

2 גבהים = השוקים עצמם
(הם כבר ניצבים!)

1 גובה = קטע מהזווית הישרה ליתר

תשובה: קטע המחבר בין הזווית הישרה ליתר בניצב

שאלה 7
6.67 נק'

📍 מיקום אורתוצנטר:
במשולש חד זווית, האורתוצנטר נמצא:

הסבר:

💡 הסבר מפורט:

שלב 1: מיקום אורתוצנטר 🔍

מיקום H תלוי בסוג ✨
המיקום משתנה
לפי סוג המשולש

שלב 2: במשולש חד זווית 📊

משולש חד זווית - H בתוךH← בתוך!ABC

שלב 3: טבלה לפי סוג 💭

סוג משולשמיקום H
חד זוויתבתוך המשולש
ישר זוויתעל הזווית הישרה
קהה זוויתמחוץ למשולש

שלב 4: הסבר 🤔

למה בתוך?

🔹 במשולש חד זווית - כל הזוויות קטנות מ-90°
🔹 כל הגבהים נמצאים בתוך המשולש
🔹 לכן H (נקודת החיתוך) גם בתוך!

במשולש קהה - יש גבהים מחוץ למשולש

תשובה: בתוך המשולש

שאלה 8
6.67 נק'

תכונת הגובה:
הגובה במשולש תמיד _____ לצלע.

הסבר:

💡 הסבר מפורט:

שלב 1: התכונה העיקרית 🔍

גובה = ניצב ✨
גובה תמיד

ניצב (⊥)

לצלע (זווית 90°)

שלב 2: דוגמה ויזואלית 📊

גובה90°DABC⊥ תמיד ניצב!

שלב 3: למה חשוב? 💭

חשיבות הניצב:

✅ זו ההגדרה של גובה
✅ רק קו ניצב נחשב לגובה
✅ הגובה הוא המרחק הקצר ביותר מקדקוד לצלע
✅ חשוב לחישוב שטח

שלב 4: בלבול נפוץ ⚠️

אל תבלבל:

❌ גובה לא מקביל לצלע
❌ גובה לא תמיד שווה לצלע
❌ גובה לא חייב לחלק צלע לשניים

✅ גובה רק צריך להיות ניצב!

תשובה: ניצב (זווית 90°)

שאלה 9
6.67 נק'

🔢 תרגיל:
שטח משולש הוא 36 ס"מ²
והבסיס הוא 9 ס"מ.
מה אורך הגובה?

הסבר:

💡 הסבר מפורט:

שלב 1: הנתונים 🔍

נתון:
🔹 שטח = 36 ס"מ²
🔹 בסיס = 9 ס"מ

מבוקש:
🔹 גובה = ?

שלב 2: הנוסחה 📐

נוסחת שטח:

S = ½ × בסיס × גובה

36 = ½ × 9 × גובה

שלב 3: פתרון המשוואה ✍️

36 = ½ × 9 × גובה

36 = 4.5 × גובה

גובה = 36 ÷ 4.5

גובה = 8 ס"מ

שלב 4: דרך נוספת 💭

נכפול שני צדדים ב-2:

72 = 9 × גובה

גובה = 72 ÷ 9

גובה = 8 ס"מ

שלב 5: בדיקה 🔍

בדיקה:
🔹 S = ½ × 9 × 8
🔹 S = ½ × 72
🔹 S = 36 ס"מ² ✓

התשובה נכונה!

תשובה: 8 ס"מ

שאלה 10
6.67 נק'

📏 המשכת צלע:
במשולש קהה זווית, הגובה יכול להגיע:

הסבר:

💡 הסבר מפורט:

שלב 1: משולש קהה זווית 🔍

משולש קהה ✨
יש זווית גדולה מ-90°

חלק מהגבהים
נמצאים מחוץ למשולש

שלב 2: דוגמה ויזואלית 📊

משולש קהה - גובה להמשכההמשכהגובהD (על המשכה)ABCהגובה ניצב להמשכת הצלע!

שלב 3: למה? 💭

הסבר:

🔹 במשולש קהה - יש זווית גדולה מ-90°
🔹 כשמצוירים גבהים מהקדקודים הסמוכים לזווית הקהה
🔹 הם "יורדים" אחורה - מחוץ למשולש
🔹 צריך להאריך את הצלע כדי להגיע לגובה

זה תקין וחוקי!

שלב 4: כלל כללי 📐

ההגדרה:

גובה = קטע ניצב
מקדקוד לצלע או להמשכתה

שני המקרים חוקיים!

תשובה: להמשכה של הצלע

שאלה 11
6.67 נק'

נכון או לא נכון:
במשולש ישר זווית, הזווית הישרה
היא האורתוצנטר.

הסבר:

💡 הסבר מפורט:

שלב 1: האמירה 🔍

האמירה:

במשולש ישר זווית

הזווית הישרה = אורתוצנטר (H)

שלב 2: דוגמה ויזואלית 📊

נכון! H = הזווית הישרהגובהגובהגובה למיתר90°H= BABCכל 3 הגבהים נפגשים ב-B!

שלב 3: הסבר 💭

למה נכון?

🔹 במשולש ישר זווית (נניח ב-B):
🔹 השוק AB ניצב לשוק BC → AB הוא גובה
🔹 השוק BC ניצב לשוק AB → BC הוא גובה
🔹 הגובה השלישי גם עובר דרך B
🔹 לכן: כל 3 הגבהים נפגשים ב-B (הזווית הישרה)

H = B!

שלב 4: סיכום 🌟

במשולש ישר זווית:

האורתוצנטר (H)
=
הקדקוד עם הזווית הישרה

זה מקרה מיוחד!

תשובה: נכון

שאלה 12
6.67 נק'

🎓 תרגיל מתקדם:
במשולש ABC: צלע AB = 10 ס"מ.
הגובה מ-C לצלע AB הוא 6 ס"מ.
מה שטח המשולש?

הסבר:

💡 הסבר מפורט:

שלב 1: הבנת הנתונים 🔍

נתון:
🔹 צלע AB = 10 ס"מ (הבסיס)
🔹 גובה מ-C ל-AB = 6 ס"מ

מבוקש:
🔹 שטח המשולש = ?

שלב 2: דוגמה ויזואלית 📊

AB = 10 ס"מh = 6 ס"מCABS = ?

שלב 3: הנוסחה 📐

נוסחה:

S = ½ × בסיס × גובה

S = ½ × AB × h

S = ½ × 10 × 6

שלב 4: חישוב ✍️

S = ½ × 10 × 6

S = ½ × 60

S = 30 ס"מ²

שלב 5: בדיקה 🔍

בדיקה:
🔹 בסיס = 10 ס"מ
🔹 גובה = 6 ס"מ
🔹 ½ × 10 × 6 = 30 ס"מ² ✓

התשובה נכונה!

תשובה: 30 ס"מ²

שאלה 13
6.67 נק'

🔄 השוואה:
מה ההבדל בין גובה לתיכון?

הסבר:

💡 הסבר מפורט:

שלב 1: ההבדלים 🔍

שני קווים שונים ✨
גובה ותיכון
הם שונים לגמרי!

שלב 2: טבלת השוואה 📊

תכונהגובהתיכון
מאיפה?מקדקודמקדקוד
לאן?לצלע (ניצב)לאמצע צלע
זווית?90° (ניצב)לא בהכרח
נקודת חיתוך?H (אורתוצנטר)G (מרכז כובד)
שימוש?חישוב שטחנקודת איזון

שלב 3: דוגמה ויזואלית - גובה 📐

גובה - ניצב לצלעגובה (ניצב)90°ABC

שלב 4: דוגמה ויזואלית - תיכון 📐

תיכון - מאמצע צלעתיכוןM (אמצע)ABC

תשובה: גובה = ניצב לצלע, תיכון = מאמצע צלע

שאלה 14
6.67 נק'

🔺 סוג משולש:
במשולש שווה צלעות, כל גובה הוא גם:

הסבר:

💡 הסבר מפורט:

שלב 1: משולש שווה צלעות 🔍

משולש מיוחד ✨
במשולש שווה צלעות

כל הקווים המיוחדים
חופפים!

שלב 2: דוגמה ויזואלית 📊

גובה = תיכון = חוצה!גובה + תיכון + חוצה!M (אמצע)ααABC

שלב 3: למה? 💭

הסבר:

גובה: ניצב לצלע
תיכון: מגיע לאמצע הצלע (בגלל סימטריה)
חוצה זווית: מחלק זווית לשניים (בגלל סימטריה)

🔹 במשולש שווה צלעות - הכל סימטרי
🔹 לכן כל הקווים האלה חופפים!

שלב 4: טבלה מסכמת 🌟

סוג משולשהאם גובה = תיכון?
שווה צלעותכן (תמיד)
שווה שוקייםרק מזווית הראש
כללילא בהכרח

תשובה: תיכון וחוצה זווית

שאלה 15
6.67 נק'

🌟 שאלת סיכום:
איזו מהאמירות הבאות נכונה?

הסבר:

💡 הסבר מפורט:

שלב 1: סיכום הפרק 🔍

סיכום: גבהים ✨
המשפטים החשובים
בפרק זה

שלב 2: בדיקת כל אפשרות 📊

אמירהנכון?הסבר
גבהים נפגשים באורתוצנטרזה המשפט!
גובה תמיד חולק צלע לשנייםלא נכון - זה תיכון
במשולש קהה אי אפשר לצייר גבהיםשגוי - אפשר (להמשכה)
למשולש יש 6 גבהיםשגוי - רק 3 גבהים

שלב 3: דוגמה ויזואלית 📐

3 גבהים נפגשים ב-H!H← אורתוצנטרABCכל 3 הגבהים נפגשים ב-H!

שלב 4: עיקרי הפרק 💭

סיכום:

✅ גובה = קטע ניצב מקדקוד לצלע
✅ למשולש יש 3 גבהים
✅ כולם נפגשים ב-H (אורתוצנטר)
✅ נוסחת שטח: S = ½ × בסיס × גובה
✅ במשולש קהה - גובה יכול להגיע להמשכת צלע

תשובה: הגבהים במשולש נפגשים באורתוצנטר

🎓
לא רוצה להישאר לבד עם החומר?
הצטרפו לקורס שנתי עם משימות יומיות, ליווי אישי וקבוצות זום
🤖

עוזר הקורסים החכם

אני כאן לעזור לך למצוא את הקורס המתאים

×
👋 שלום! אשמח לעזור לך
שלום, אשמח לעזור לך להתמצא באתר ולמקד אותך לצורך שלך. נתחיל בבחירה:
🎓 מתמטיקה לבגרות
📚 אקדמיה (סטטיסטיקה / כלכלה / מתמטיקה)
0 / 15 הושלמו