מצב תצוגה מקדימה - הירשמי כדי לקבל שאלות עם מספרים משתנים ומעקב התקדמות! הרשמה חינם
אורח מצב צפייה מבחן: משפט הקוסינוסים - שני שלבים

משפט הקוסינוסים - שני שלבים

שימוש במשפט הקוסינוסים למציאת זווית
בדיקה מיידית הסברים מלאים חינם לחלוטין מותאם לנייד
מספר שאלות: 40
ניקוד כולל: 100 נק'
רוצה לבחור רמת קושי? הירשם בחינם ותוכל לבחור בין בסיסי, בינוני ומתקדם
שאלה 1
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 9
• c = 10

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 9^2 - 10^2}{2 \cdot 6 \cdot 9}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 81 - 100}{108} = 0.1574\)

\(C = \arccos(0.1574) = 80.9°\)
התשובה: C = 80.9°
שאלה 2
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 8
• b = 6
• c = 10

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{8^2 + 6^2 - 10^2}{2 \cdot 8 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{64 + 36 - 100}{96} = 0\)

\(C = \arccos(0) = 90°\)
התשובה: C = 90°
שאלה 3
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 9
• b = 8
• c = 5

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{9^2 + 8^2 - 5^2}{2 \cdot 9 \cdot 8}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{81 + 64 - 25}{144} = 0.8333\)

\(C = \arccos(0.8333) = 33.6°\)
התשובה: C = 33.6°
שאלה 4
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 5
• b = 7
• c = 7

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{5^2 + 7^2 - 7^2}{2 \cdot 5 \cdot 7}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{25 + 49 - 49}{70} = 0.3571\)

\(C = \arccos(0.3571) = 69.1°\)
התשובה: C = 69.1°
שאלה 5
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 9
• b = 9
• c = 11

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{9^2 + 9^2 - 11^2}{2 \cdot 9 \cdot 9}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{81 + 81 - 121}{162} = 0.2531\)

\(C = \arccos(0.2531) = 75.3°\)
התשובה: C = 75.3°
שאלה 6
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 5
• c = 2

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 5^2 - 2^2}{2 \cdot 6 \cdot 5}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 25 - 4}{60} = 0.95\)

\(C = \arccos(0.95) = 18.2°\)
התשובה: C = 18.2°
שאלה 7
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 6
• c = 6

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 6^2 - 6^2}{2 \cdot 6 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 36 - 36}{72} = 0.5\)

\(C = \arccos(0.5) = 60°\)
התשובה: C = 60°
שאלה 8
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 6
• c = 10

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 6^2 - 10^2}{2 \cdot 6 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 36 - 100}{72} = -0.3889\)

\(C = \arccos(-0.3889) = 112.9°\)
התשובה: C = 112.9°
שאלה 9
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 5
• b = 9
• c = 8

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{5^2 + 9^2 - 8^2}{2 \cdot 5 \cdot 9}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{25 + 81 - 64}{90} = 0.4667\)

\(C = \arccos(0.4667) = 62.2°\)
התשובה: C = 62.2°
שאלה 10
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 7
• b = 6
• c = 5

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{7^2 + 6^2 - 5^2}{2 \cdot 7 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{49 + 36 - 25}{84} = 0.7143\)

\(C = \arccos(0.7143) = 44.4°\)
התשובה: C = 44.4°
שאלה 11
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 7
• b = 9
• c = 12

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{7^2 + 9^2 - 12^2}{2 \cdot 7 \cdot 9}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{49 + 81 - 144}{126} = -0.1111\)

\(C = \arccos(-0.1111) = 96.4°\)
התשובה: C = 96.4°
שאלה 12
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 8
• b = 8
• c = 14

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{8^2 + 8^2 - 14^2}{2 \cdot 8 \cdot 8}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{64 + 64 - 196}{128} = -0.5312\)

\(C = \arccos(-0.5312) = 122.1°\)
התשובה: C = 122.1°
שאלה 13
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 7
• b = 5
• c = 5

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{7^2 + 5^2 - 5^2}{2 \cdot 7 \cdot 5}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{49 + 25 - 25}{70} = 0.7\)

\(C = \arccos(0.7) = 45.6°\)
התשובה: C = 45.6°
שאלה 14
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 6
• c = 8

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 6^2 - 8^2}{2 \cdot 6 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 36 - 64}{72} = 0.1111\)

\(C = \arccos(0.1111) = 83.6°\)
התשובה: C = 83.6°
שאלה 15
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 8
• b = 6
• c = 3

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{8^2 + 6^2 - 3^2}{2 \cdot 8 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{64 + 36 - 9}{96} = 0.9479\)

\(C = \arccos(0.9479) = 18.6°\)
התשובה: C = 18.6°
שאלה 16
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 5
• b = 6
• c = 5

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{5^2 + 6^2 - 5^2}{2 \cdot 5 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{25 + 36 - 25}{60} = 0.6\)

\(C = \arccos(0.6) = 53.1°\)
התשובה: C = 53.1°
שאלה 17
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 7
• c = 6

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 7^2 - 6^2}{2 \cdot 6 \cdot 7}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 49 - 36}{84} = 0.5833\)

\(C = \arccos(0.5833) = 54.3°\)
התשובה: C = 54.3°
שאלה 18
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 5
• c = 3

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 5^2 - 3^2}{2 \cdot 6 \cdot 5}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 25 - 9}{60} = 0.8667\)

\(C = \arccos(0.8667) = 29.9°\)
התשובה: C = 29.9°
שאלה 19
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 5
• c = 6

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 5^2 - 6^2}{2 \cdot 6 \cdot 5}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 25 - 36}{60} = 0.4167\)

\(C = \arccos(0.4167) = 65.4°\)
התשובה: C = 65.4°
שאלה 20
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 8
• b = 8
• c = 7

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{8^2 + 8^2 - 7^2}{2 \cdot 8 \cdot 8}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{64 + 64 - 49}{128} = 0.6172\)

\(C = \arccos(0.6172) = 51.9°\)
התשובה: C = 51.9°
שאלה 21
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 6
• c = 4

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 6^2 - 4^2}{2 \cdot 6 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 36 - 16}{72} = 0.7778\)

\(C = \arccos(0.7778) = 38.9°\)
התשובה: C = 38.9°
שאלה 22
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 9
• b = 8
• c = 11

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{9^2 + 8^2 - 11^2}{2 \cdot 9 \cdot 8}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{81 + 64 - 121}{144} = 0.1667\)

\(C = \arccos(0.1667) = 80.4°\)
התשובה: C = 80.4°
שאלה 23
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 8
• b = 5
• c = 4

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{8^2 + 5^2 - 4^2}{2 \cdot 8 \cdot 5}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{64 + 25 - 16}{80} = 0.9125\)

\(C = \arccos(0.9125) = 24.1°\)
התשובה: C = 24.1°
שאלה 24
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 8
• b = 9
• c = 4

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{8^2 + 9^2 - 4^2}{2 \cdot 8 \cdot 9}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{64 + 81 - 16}{144} = 0.8958\)

\(C = \arccos(0.8958) = 26.4°\)
התשובה: C = 26.4°
שאלה 25
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 8
• b = 9
• c = 15

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{8^2 + 9^2 - 15^2}{2 \cdot 8 \cdot 9}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{64 + 81 - 225}{144} = -0.5556\)

\(C = \arccos(-0.5556) = 123.7°\)
התשובה: C = 123.7°
שאלה 26
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 9
• b = 7
• c = 13

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{9^2 + 7^2 - 13^2}{2 \cdot 9 \cdot 7}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{81 + 49 - 169}{126} = -0.3095\)

\(C = \arccos(-0.3095) = 108°\)
התשובה: C = 108°
שאלה 27
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 9
• b = 5
• c = 9

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{9^2 + 5^2 - 9^2}{2 \cdot 9 \cdot 5}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{81 + 25 - 81}{90} = 0.2778\)

\(C = \arccos(0.2778) = 73.9°\)
התשובה: C = 73.9°
שאלה 28
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 5
• b = 6
• c = 9

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{5^2 + 6^2 - 9^2}{2 \cdot 5 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{25 + 36 - 81}{60} = -0.3333\)

\(C = \arccos(-0.3333) = 109.5°\)
התשובה: C = 109.5°
שאלה 29
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 9
• b = 5
• c = 12

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{9^2 + 5^2 - 12^2}{2 \cdot 9 \cdot 5}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{81 + 25 - 144}{90} = -0.4222\)

\(C = \arccos(-0.4222) = 115°\)
התשובה: C = 115°
שאלה 30
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 7
• b = 6
• c = 9

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{7^2 + 6^2 - 9^2}{2 \cdot 7 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{49 + 36 - 81}{84} = 0.0476\)

\(C = \arccos(0.0476) = 87.3°\)
התשובה: C = 87.3°
שאלה 31
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 9
• c = 6

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 9^2 - 6^2}{2 \cdot 6 \cdot 9}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 81 - 36}{108} = 0.75\)

\(C = \arccos(0.75) = 41.4°\)
התשובה: C = 41.4°
שאלה 32
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 9
• b = 5
• c = 12

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{9^2 + 5^2 - 12^2}{2 \cdot 9 \cdot 5}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{81 + 25 - 144}{90} = -0.4222\)

\(C = \arccos(-0.4222) = 115°\)
התשובה: C = 115°
שאלה 33
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 7
• b = 9
• c = 11

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{7^2 + 9^2 - 11^2}{2 \cdot 7 \cdot 9}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{49 + 81 - 121}{126} = 0.0714\)

\(C = \arccos(0.0714) = 85.9°\)
התשובה: C = 85.9°
שאלה 34
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 6
• c = 2

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 6^2 - 2^2}{2 \cdot 6 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 36 - 4}{72} = 0.9444\)

\(C = \arccos(0.9444) = 19.2°\)
התשובה: C = 19.2°
שאלה 35
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 7
• c = 8

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 7^2 - 8^2}{2 \cdot 6 \cdot 7}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 49 - 64}{84} = 0.25\)

\(C = \arccos(0.25) = 75.5°\)
התשובה: C = 75.5°
שאלה 36
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 8
• c = 4

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 8^2 - 4^2}{2 \cdot 6 \cdot 8}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 64 - 16}{96} = 0.875\)

\(C = \arccos(0.875) = 29°\)
התשובה: C = 29°
שאלה 37
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 7
• c = 6

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 7^2 - 6^2}{2 \cdot 6 \cdot 7}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 49 - 36}{84} = 0.5833\)

\(C = \arccos(0.5833) = 54.3°\)
התשובה: C = 54.3°
שאלה 38
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 8
• b = 8
• c = 11

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{8^2 + 8^2 - 11^2}{2 \cdot 8 \cdot 8}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{64 + 64 - 121}{128} = 0.0547\)

\(C = \arccos(0.0547) = 86.9°\)
התשובה: C = 86.9°
שאלה 39
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 9
• b = 6
• c = 5

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{9^2 + 6^2 - 5^2}{2 \cdot 9 \cdot 6}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{81 + 36 - 25}{108} = 0.8519\)

\(C = \arccos(0.8519) = 31.6°\)
התשובה: C = 31.6°
שאלה 40
2.50 נק'
📐 משפט הקוסינוסים - מציאת זווית:

במשולש ABC נתונות שלוש הצלעות:
• a = 6
• b = 9
• c = 8

מצא את זווית C.
הסבר:
פתרון - משפט הקוסינוסים (מציאת זווית):

📝 נוסחה למציאת זווית:
\(\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}\)
🔢 שלב 1: נציב את הנתונים
\(\cos(C) = \frac{6^2 + 9^2 - 8^2}{2 \cdot 6 \cdot 9}\)

🔢 שלב 2: נחשב
\(\cos(C) = \frac{36 + 81 - 64}{108} = 0.4907\)

\(C = \arccos(0.4907) = 60.6°\)
התשובה: C = 60.6°
🎓
לא רוצה להישאר לבד עם החומר?
הצטרפו לקורס שנתי עם משימות יומיות, ליווי אישי וקבוצות זום
🤖

עוזר הקורסים החכם

אני כאן לעזור לך למצוא את הקורס המתאים

×
👋 שלום! אשמח לעזור לך
שלום, אשמח לעזור לך להתמצא באתר ולמקד אותך לצורך שלך. נתחיל בבחירה:
🎓 מתמטיקה לבגרות
📚 אקדמיה (סטטיסטיקה / כלכלה / מתמטיקה)
0 / 40 הושלמו