מצב תצוגה מקדימה - הירשמי כדי לקבל שאלות עם מספרים משתנים ומעקב התקדמות! הרשמה חינם
אורח מצב צפייה מבחן: סדרה חשבונית - סכום n איברים ראשונים Sₙ

סדרה חשבונית - סכום n איברים ראשונים Sₙ

מציאת סכום n איברים ראשונים

בדיקה מיידית הסברים מלאים חינם לחלוטין מותאם לנייד
מספר שאלות: 40
ניקוד כולל: 100 נק'
רוצה לבחור רמת קושי? הירשם בחינם ותוכל לבחור בין בסיסי, בינוני ומתקדם
שאלה 1
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 9\)
• ההפרש: \(d = 2\)

מצא את סכום 15 האיברים הראשונים \(S_{15}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{15} = \frac{15(2 \cdot 9 + (15-1) \cdot 2)}{2}\)

\(S_{15} = \frac{15(18 + 28)}{2}\)

\(S_{15} = \frac{15 \cdot 46}{2} = \frac{690}{2} = 345\)
התשובה: 345
שאלה 2
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 1\)
• ההפרש: \(d = 3\)

מצא את סכום 16 האיברים הראשונים \(S_{16}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{16} = \frac{16(2 \cdot 1 + (16-1) \cdot 3)}{2}\)

\(S_{16} = \frac{16(2 + 45)}{2}\)

\(S_{16} = \frac{16 \cdot 47}{2} = \frac{752}{2} = 376\)
התשובה: 376
שאלה 3
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 4\)
• ההפרש: \(d = 3\)

מצא את סכום 14 האיברים הראשונים \(S_{14}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{14} = \frac{14(2 \cdot 4 + (14-1) \cdot 3)}{2}\)

\(S_{14} = \frac{14(8 + 39)}{2}\)

\(S_{14} = \frac{14 \cdot 47}{2} = \frac{658}{2} = 329\)
התשובה: 329
שאלה 4
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 4\)
• ההפרש: \(d = 4\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 4 + (19-1) \cdot 4)}{2}\)

\(S_{19} = \frac{19(8 + 72)}{2}\)

\(S_{19} = \frac{19 \cdot 80}{2} = \frac{1520}{2} = 760\)
התשובה: 760
שאלה 5
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 2\)
• ההפרש: \(d = 2\)

מצא את סכום 14 האיברים הראשונים \(S_{14}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{14} = \frac{14(2 \cdot 2 + (14-1) \cdot 2)}{2}\)

\(S_{14} = \frac{14(4 + 26)}{2}\)

\(S_{14} = \frac{14 \cdot 30}{2} = \frac{420}{2} = 210\)
התשובה: 210
שאלה 6
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 3\)

מצא את סכום 14 האיברים הראשונים \(S_{14}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{14} = \frac{14(2 \cdot 3 + (14-1) \cdot 3)}{2}\)

\(S_{14} = \frac{14(6 + 39)}{2}\)

\(S_{14} = \frac{14 \cdot 45}{2} = \frac{630}{2} = 315\)
התשובה: 315
שאלה 7
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 4\)
• ההפרש: \(d = 2\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 4 + (19-1) \cdot 2)}{2}\)

\(S_{19} = \frac{19(8 + 36)}{2}\)

\(S_{19} = \frac{19 \cdot 44}{2} = \frac{836}{2} = 418\)
התשובה: 418
שאלה 8
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 4\)

מצא את סכום 12 האיברים הראשונים \(S_{12}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{12} = \frac{12(2 \cdot 5 + (12-1) \cdot 4)}{2}\)

\(S_{12} = \frac{12(10 + 44)}{2}\)

\(S_{12} = \frac{12 \cdot 54}{2} = \frac{648}{2} = 324\)
התשובה: 324
שאלה 9
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 1\)
• ההפרש: \(d = 5\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 1 + (19-1) \cdot 5)}{2}\)

\(S_{19} = \frac{19(2 + 90)}{2}\)

\(S_{19} = \frac{19 \cdot 92}{2} = \frac{1748}{2} = 874\)
התשובה: 874
שאלה 10
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 2\)
• ההפרש: \(d = 3\)

מצא את סכום 12 האיברים הראשונים \(S_{12}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{12} = \frac{12(2 \cdot 2 + (12-1) \cdot 3)}{2}\)

\(S_{12} = \frac{12(4 + 33)}{2}\)

\(S_{12} = \frac{12 \cdot 37}{2} = \frac{444}{2} = 222\)
התשובה: 222
שאלה 11
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 6\)
• ההפרש: \(d = 1\)

מצא את סכום 13 האיברים הראשונים \(S_{13}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{13} = \frac{13(2 \cdot 6 + (13-1) \cdot 1)}{2}\)

\(S_{13} = \frac{13(12 + 12)}{2}\)

\(S_{13} = \frac{13 \cdot 24}{2} = \frac{312}{2} = 156\)
התשובה: 156
שאלה 12
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 3\)

מצא את סכום 18 האיברים הראשונים \(S_{18}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{18} = \frac{18(2 \cdot 5 + (18-1) \cdot 3)}{2}\)

\(S_{18} = \frac{18(10 + 51)}{2}\)

\(S_{18} = \frac{18 \cdot 61}{2} = \frac{1098}{2} = 549\)
התשובה: 549
שאלה 13
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 5\)

מצא את סכום 16 האיברים הראשונים \(S_{16}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{16} = \frac{16(2 \cdot 5 + (16-1) \cdot 5)}{2}\)

\(S_{16} = \frac{16(10 + 75)}{2}\)

\(S_{16} = \frac{16 \cdot 85}{2} = \frac{1360}{2} = 680\)
התשובה: 680
שאלה 14
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 2\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 7 + (19-1) \cdot 2)}{2}\)

\(S_{19} = \frac{19(14 + 36)}{2}\)

\(S_{19} = \frac{19 \cdot 50}{2} = \frac{950}{2} = 475\)
התשובה: 475
שאלה 15
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 1\)
• ההפרש: \(d = 1\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 1 + (19-1) \cdot 1)}{2}\)

\(S_{19} = \frac{19(2 + 18)}{2}\)

\(S_{19} = \frac{19 \cdot 20}{2} = \frac{380}{2} = 190\)
התשובה: 190
שאלה 16
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 5\)

מצא את סכום 18 האיברים הראשונים \(S_{18}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{18} = \frac{18(2 \cdot 3 + (18-1) \cdot 5)}{2}\)

\(S_{18} = \frac{18(6 + 85)}{2}\)

\(S_{18} = \frac{18 \cdot 91}{2} = \frac{1638}{2} = 819\)
התשובה: 819
שאלה 17
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 9\)
• ההפרש: \(d = 4\)

מצא את סכום 18 האיברים הראשונים \(S_{18}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{18} = \frac{18(2 \cdot 9 + (18-1) \cdot 4)}{2}\)

\(S_{18} = \frac{18(18 + 68)}{2}\)

\(S_{18} = \frac{18 \cdot 86}{2} = \frac{1548}{2} = 774\)
התשובה: 774
שאלה 18
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 4\)
• ההפרש: \(d = 5\)

מצא את סכום 9 האיברים הראשונים \(S_{9}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{9} = \frac{9(2 \cdot 4 + (9-1) \cdot 5)}{2}\)

\(S_{9} = \frac{9(8 + 40)}{2}\)

\(S_{9} = \frac{9 \cdot 48}{2} = \frac{432}{2} = 216\)
התשובה: 216
שאלה 19
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 6\)
• ההפרש: \(d = 3\)

מצא את סכום 15 האיברים הראשונים \(S_{15}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{15} = \frac{15(2 \cdot 6 + (15-1) \cdot 3)}{2}\)

\(S_{15} = \frac{15(12 + 42)}{2}\)

\(S_{15} = \frac{15 \cdot 54}{2} = \frac{810}{2} = 405\)
התשובה: 405
שאלה 20
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 1\)

מצא את סכום 15 האיברים הראשונים \(S_{15}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{15} = \frac{15(2 \cdot 3 + (15-1) \cdot 1)}{2}\)

\(S_{15} = \frac{15(6 + 14)}{2}\)

\(S_{15} = \frac{15 \cdot 20}{2} = \frac{300}{2} = 150\)
התשובה: 150
שאלה 21
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 2\)

מצא את סכום 9 האיברים הראשונים \(S_{9}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{9} = \frac{9(2 \cdot 7 + (9-1) \cdot 2)}{2}\)

\(S_{9} = \frac{9(14 + 16)}{2}\)

\(S_{9} = \frac{9 \cdot 30}{2} = \frac{270}{2} = 135\)
התשובה: 135
שאלה 22
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 2\)
• ההפרש: \(d = 4\)

מצא את סכום 15 האיברים הראשונים \(S_{15}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{15} = \frac{15(2 \cdot 2 + (15-1) \cdot 4)}{2}\)

\(S_{15} = \frac{15(4 + 56)}{2}\)

\(S_{15} = \frac{15 \cdot 60}{2} = \frac{900}{2} = 450\)
התשובה: 450
שאלה 23
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 4\)

מצא את סכום 18 האיברים הראשונים \(S_{18}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{18} = \frac{18(2 \cdot 5 + (18-1) \cdot 4)}{2}\)

\(S_{18} = \frac{18(10 + 68)}{2}\)

\(S_{18} = \frac{18 \cdot 78}{2} = \frac{1404}{2} = 702\)
התשובה: 702
שאלה 24
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 6\)
• ההפרש: \(d = 5\)

מצא את סכום 14 האיברים הראשונים \(S_{14}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{14} = \frac{14(2 \cdot 6 + (14-1) \cdot 5)}{2}\)

\(S_{14} = \frac{14(12 + 65)}{2}\)

\(S_{14} = \frac{14 \cdot 77}{2} = \frac{1078}{2} = 539\)
התשובה: 539
שאלה 25
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 8\)
• ההפרש: \(d = 3\)

מצא את סכום 9 האיברים הראשונים \(S_{9}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{9} = \frac{9(2 \cdot 8 + (9-1) \cdot 3)}{2}\)

\(S_{9} = \frac{9(16 + 24)}{2}\)

\(S_{9} = \frac{9 \cdot 40}{2} = \frac{360}{2} = 180\)
התשובה: 180
שאלה 26
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 9\)
• ההפרש: \(d = 3\)

מצא את סכום 14 האיברים הראשונים \(S_{14}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{14} = \frac{14(2 \cdot 9 + (14-1) \cdot 3)}{2}\)

\(S_{14} = \frac{14(18 + 39)}{2}\)

\(S_{14} = \frac{14 \cdot 57}{2} = \frac{798}{2} = 399\)
התשובה: 399
שאלה 27
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 4\)
• ההפרש: \(d = 4\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 4 + (19-1) \cdot 4)}{2}\)

\(S_{19} = \frac{19(8 + 72)}{2}\)

\(S_{19} = \frac{19 \cdot 80}{2} = \frac{1520}{2} = 760\)
התשובה: 760
שאלה 28
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 1\)
• ההפרש: \(d = 2\)

מצא את סכום 17 האיברים הראשונים \(S_{17}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{17} = \frac{17(2 \cdot 1 + (17-1) \cdot 2)}{2}\)

\(S_{17} = \frac{17(2 + 32)}{2}\)

\(S_{17} = \frac{17 \cdot 34}{2} = \frac{578}{2} = 289\)
התשובה: 289
שאלה 29
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 2\)

מצא את סכום 10 האיברים הראשונים \(S_{10}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{10} = \frac{10(2 \cdot 5 + (10-1) \cdot 2)}{2}\)

\(S_{10} = \frac{10(10 + 18)}{2}\)

\(S_{10} = \frac{10 \cdot 28}{2} = \frac{280}{2} = 140\)
התשובה: 140
שאלה 30
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 4\)
• ההפרש: \(d = 5\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 4 + (19-1) \cdot 5)}{2}\)

\(S_{19} = \frac{19(8 + 90)}{2}\)

\(S_{19} = \frac{19 \cdot 98}{2} = \frac{1862}{2} = 931\)
התשובה: 931
שאלה 31
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 2\)

מצא את סכום 18 האיברים הראשונים \(S_{18}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{18} = \frac{18(2 \cdot 3 + (18-1) \cdot 2)}{2}\)

\(S_{18} = \frac{18(6 + 34)}{2}\)

\(S_{18} = \frac{18 \cdot 40}{2} = \frac{720}{2} = 360\)
התשובה: 360
שאלה 32
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 1\)
• ההפרש: \(d = 1\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 1 + (19-1) \cdot 1)}{2}\)

\(S_{19} = \frac{19(2 + 18)}{2}\)

\(S_{19} = \frac{19 \cdot 20}{2} = \frac{380}{2} = 190\)
התשובה: 190
שאלה 33
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 9\)
• ההפרש: \(d = 5\)

מצא את סכום 12 האיברים הראשונים \(S_{12}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{12} = \frac{12(2 \cdot 9 + (12-1) \cdot 5)}{2}\)

\(S_{12} = \frac{12(18 + 55)}{2}\)

\(S_{12} = \frac{12 \cdot 73}{2} = \frac{876}{2} = 438\)
התשובה: 438
שאלה 34
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 4\)
• ההפרש: \(d = 4\)

מצא את סכום 12 האיברים הראשונים \(S_{12}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{12} = \frac{12(2 \cdot 4 + (12-1) \cdot 4)}{2}\)

\(S_{12} = \frac{12(8 + 44)}{2}\)

\(S_{12} = \frac{12 \cdot 52}{2} = \frac{624}{2} = 312\)
התשובה: 312
שאלה 35
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 9\)
• ההפרש: \(d = 2\)

מצא את סכום 18 האיברים הראשונים \(S_{18}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{18} = \frac{18(2 \cdot 9 + (18-1) \cdot 2)}{2}\)

\(S_{18} = \frac{18(18 + 34)}{2}\)

\(S_{18} = \frac{18 \cdot 52}{2} = \frac{936}{2} = 468\)
התשובה: 468
שאלה 36
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 3\)

מצא את סכום 12 האיברים הראשונים \(S_{12}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{12} = \frac{12(2 \cdot 3 + (12-1) \cdot 3)}{2}\)

\(S_{12} = \frac{12(6 + 33)}{2}\)

\(S_{12} = \frac{12 \cdot 39}{2} = \frac{468}{2} = 234\)
התשובה: 234
שאלה 37
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 1\)
• ההפרש: \(d = 4\)

מצא את סכום 8 האיברים הראשונים \(S_{8}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{8} = \frac{8(2 \cdot 1 + (8-1) \cdot 4)}{2}\)

\(S_{8} = \frac{8(2 + 28)}{2}\)

\(S_{8} = \frac{8 \cdot 30}{2} = \frac{240}{2} = 120\)
התשובה: 120
שאלה 38
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 1\)
• ההפרש: \(d = 5\)

מצא את סכום 10 האיברים הראשונים \(S_{10}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{10} = \frac{10(2 \cdot 1 + (10-1) \cdot 5)}{2}\)

\(S_{10} = \frac{10(2 + 45)}{2}\)

\(S_{10} = \frac{10 \cdot 47}{2} = \frac{470}{2} = 235\)
התשובה: 235
שאלה 39
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 3\)

מצא את סכום 8 האיברים הראשונים \(S_{8}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{8} = \frac{8(2 \cdot 7 + (8-1) \cdot 3)}{2}\)

\(S_{8} = \frac{8(14 + 21)}{2}\)

\(S_{8} = \frac{8 \cdot 35}{2} = \frac{280}{2} = 140\)
התשובה: 140
שאלה 40
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 4\)

מצא את סכום 14 האיברים הראשונים \(S_{14}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{14} = \frac{14(2 \cdot 3 + (14-1) \cdot 4)}{2}\)

\(S_{14} = \frac{14(6 + 52)}{2}\)

\(S_{14} = \frac{14 \cdot 58}{2} = \frac{812}{2} = 406\)
התשובה: 406
🎓
לא רוצה להישאר לבד עם החומר?
הצטרפו לקורס שנתי עם משימות יומיות, ליווי אישי וקבוצות זום
🤖

עוזר הקורסים החכם

אני כאן לעזור לך למצוא את הקורס המתאים

×
👋 שלום! אשמח לעזור לך
שלום, אשמח לעזור לך להתמצא באתר ולמקד אותך לצורך שלך. נתחיל בבחירה:
🎓 מתמטיקה לבגרות
📚 אקדמיה (סטטיסטיקה / כלכלה / מתמטיקה)
0 / 40 הושלמו