מצב תצוגה מקדימה - הירשמי כדי לקבל שאלות עם מספרים משתנים ומעקב התקדמות! הרשמה חינם
אורח מצב צפייה מבחן: משפט הסינוסים - שני שלבים

משפט הסינוסים - שני שלבים

שימוש במשפט הסינוסים בשני שלבים
בדיקה מיידית הסברים מלאים חינם לחלוטין מותאם לנייד
מספר שאלות: 40
ניקוד כולל: 100 נק'
שאלה 1
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 30°
• צלע a = 7
• צלע b = 9

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{9 \cdot \sin(30°)}{7}\)

\(B = 40.01°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 30° - 40.01° = 109.99°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 13.16\)
התשובה: c = 13.16
שאלה 2
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 30°
• צלע a = 6
• צלע b = 6

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{6 \cdot \sin(30°)}{6}\)

\(B = 30°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 30° - 30° = 120°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 10.39\)
התשובה: c = 10.39
שאלה 3
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 9
• צלע b = 9

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{9 \cdot \sin(45°)}{9}\)

\(B = 45°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 45° = 90°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 12.73\)
התשובה: c = 12.73
שאלה 4
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 5
• צלע b = 4

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{4 \cdot \sin(60°)}{5}\)

\(B = 43.85°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 43.85° = 76.15°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 5.61\)
התשובה: c = 5.61
שאלה 5
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 7
• צלע b = 7

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{7 \cdot \sin(45°)}{7}\)

\(B = 45°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 45° = 90°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 9.9\)
התשובה: c = 9.9
שאלה 6
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 8
• צלע b = 8

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{8 \cdot \sin(60°)}{8}\)

\(B = 60°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 60° = 60°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 8\)
התשובה: c = 8
שאלה 7
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 10
• צלע b = 8

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{8 \cdot \sin(45°)}{10}\)

\(B = 34.45°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 34.45° = 100.55°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 13.9\)
התשובה: c = 13.9
שאלה 8
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 8
• צלע b = 6

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{6 \cdot \sin(60°)}{8}\)

\(B = 40.51°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 40.51° = 79.49°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 9.08\)
התשובה: c = 9.08
שאלה 9
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 10
• צלע b = 7

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{7 \cdot \sin(60°)}{10}\)

\(B = 37.32°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 37.32° = 82.68°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 11.45\)
התשובה: c = 11.45
שאלה 10
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 7
• צלע b = 9

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{9 \cdot \sin(45°)}{7}\)

\(B = 65.39°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 65.39° = 69.61°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 9.28\)
התשובה: c = 9.28
שאלה 11
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 6
• צלע b = 6

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{6 \cdot \sin(45°)}{6}\)

\(B = 45°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 45° = 90°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 8.49\)
התשובה: c = 8.49
שאלה 12
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 8
• צלע b = 5

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{5 \cdot \sin(60°)}{8}\)

\(B = 32.77°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 32.77° = 87.23°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 9.23\)
התשובה: c = 9.23
שאלה 13
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 6
• צלע b = 4

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{4 \cdot \sin(60°)}{6}\)

\(B = 35.26°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 35.26° = 84.74°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 6.9\)
התשובה: c = 6.9
שאלה 14
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 8
• צלע b = 6

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{6 \cdot \sin(60°)}{8}\)

\(B = 40.51°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 40.51° = 79.49°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 9.08\)
התשובה: c = 9.08
שאלה 15
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 30°
• צלע a = 6
• צלע b = 7

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{7 \cdot \sin(30°)}{6}\)

\(B = 35.69°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 30° - 35.69° = 114.31°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 10.94\)
התשובה: c = 10.94
שאלה 16
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 7
• צלע b = 5

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{5 \cdot \sin(60°)}{7}\)

\(B = 38.21°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 38.21° = 81.79°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 8\)
התשובה: c = 8
שאלה 17
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 9
• צלע b = 7

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{7 \cdot \sin(60°)}{9}\)

\(B = 42.34°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 42.34° = 77.66°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 10.15\)
התשובה: c = 10.15
שאלה 18
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 9
• צלע b = 7

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{7 \cdot \sin(60°)}{9}\)

\(B = 42.34°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 42.34° = 77.66°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 10.15\)
התשובה: c = 10.15
שאלה 19
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 30°
• צלע a = 7
• צלע b = 11

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{11 \cdot \sin(30°)}{7}\)

\(B = 51.79°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 30° - 51.79° = 98.21°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 13.86\)
התשובה: c = 13.86
שאלה 20
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 5
• צלע b = 4

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{4 \cdot \sin(60°)}{5}\)

\(B = 43.85°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 43.85° = 76.15°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 5.61\)
התשובה: c = 5.61
שאלה 21
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 6
• צלע b = 6

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{6 \cdot \sin(60°)}{6}\)

\(B = 60°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 60° = 60°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 6\)
התשובה: c = 6
שאלה 22
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 7
• צלע b = 5

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{5 \cdot \sin(60°)}{7}\)

\(B = 38.21°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 38.21° = 81.79°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 8\)
התשובה: c = 8
שאלה 23
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 10
• צלע b = 11

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{11 \cdot \sin(60°)}{10}\)

\(B = 72.29°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 72.29° = 47.71°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 8.54\)
התשובה: c = 8.54
שאלה 24
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 30°
• צלע a = 11
• צלע b = 6

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{6 \cdot \sin(30°)}{11}\)

\(B = 15.83°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 30° - 15.83° = 134.17°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 15.78\)
התשובה: c = 15.78
שאלה 25
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 30°
• צלע a = 8
• צלע b = 6

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{6 \cdot \sin(30°)}{8}\)

\(B = 22.02°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 30° - 22.02° = 127.98°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 12.61\)
התשובה: c = 12.61
שאלה 26
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 9
• צלע b = 6

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{6 \cdot \sin(45°)}{9}\)

\(B = 28.13°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 28.13° = 106.87°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 12.18\)
התשובה: c = 12.18
שאלה 27
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 5
• צלע b = 7

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{7 \cdot \sin(45°)}{5}\)

\(B = 81.87°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 81.87° = 53.13°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 5.66\)
התשובה: c = 5.66
שאלה 28
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 8
• צלע b = 9

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{9 \cdot \sin(45°)}{8}\)

\(B = 52.7°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 52.7° = 82.3°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 11.21\)
התשובה: c = 11.21
שאלה 29
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 8
• צלע b = 8

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{8 \cdot \sin(60°)}{8}\)

\(B = 60°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 60° = 60°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 8\)
התשובה: c = 8
שאלה 30
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 30°
• צלע a = 10
• צלע b = 6

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{6 \cdot \sin(30°)}{10}\)

\(B = 17.46°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 30° - 17.46° = 132.54°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 14.74\)
התשובה: c = 14.74
שאלה 31
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 30°
• צלע a = 6
• צלע b = 5

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{5 \cdot \sin(30°)}{6}\)

\(B = 24.62°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 30° - 24.62° = 125.38°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 9.78\)
התשובה: c = 9.78
שאלה 32
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 5
• צלע b = 4

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{4 \cdot \sin(60°)}{5}\)

\(B = 43.85°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 43.85° = 76.15°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 5.61\)
התשובה: c = 5.61
שאלה 33
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 5
• צלע b = 4

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{4 \cdot \sin(60°)}{5}\)

\(B = 43.85°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 43.85° = 76.15°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 5.61\)
התשובה: c = 5.61
שאלה 34
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 5
• צלע b = 4

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{4 \cdot \sin(45°)}{5}\)

\(B = 34.45°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 34.45° = 100.55°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 6.95\)
התשובה: c = 6.95
שאלה 35
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 10
• צלע b = 9

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{9 \cdot \sin(60°)}{10}\)

\(B = 51.21°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 51.21° = 68.79°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 10.76\)
התשובה: c = 10.76
שאלה 36
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 10
• צלע b = 6

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{6 \cdot \sin(45°)}{10}\)

\(B = 25.1°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 25.1° = 109.9°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 13.3\)
התשובה: c = 13.3
שאלה 37
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 8
• צלע b = 9

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{9 \cdot \sin(60°)}{8}\)

\(B = 76.98°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 76.98° = 43.02°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 6.3\)
התשובה: c = 6.3
שאלה 38
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 60°
• צלע a = 6
• צלע b = 4

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{4 \cdot \sin(60°)}{6}\)

\(B = 35.26°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 60° - 35.26° = 84.74°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 6.9\)
התשובה: c = 6.9
שאלה 39
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 30°
• צלע a = 6
• צלע b = 10

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{10 \cdot \sin(30°)}{6}\)

\(B = 56.44°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 30° - 56.44° = 93.56°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 11.98\)
התשובה: c = 11.98
שאלה 40
2.50 נק'
📐 משפט הסינוסים - שני שלבים:

במשולש ABC נתון:
• זווית A = 45°
• צלע a = 6
• צלע b = 4

מצא את צלע c.
הסבר:
פתרון - משפט הסינוסים (שני שלבים):

🔢 שלב 1: מוצאים את זווית B
\(\frac{\sin(B)}{b} = \frac{\sin(A)}{a}\)

\(\sin(B) = \frac{b \cdot \sin(A)}{a} = \frac{4 \cdot \sin(45°)}{6}\)

\(B = 28.13°\)

🔢 שלב 2: מוצאים את זווית C
\(C = 180° - A - B = 180° - 45° - 28.13° = 106.87°\)

🔢 שלב 3: מוצאים את צלע c
\(\frac{c}{\sin(C)} = \frac{a}{\sin(A)}\)

\(c = \frac{a \cdot \sin(C)}{\sin(A)} = 8.12\)
התשובה: c = 8.12
🎓
לא רוצה להישאר לבד עם החומר?
הצטרפו לקורס שנתי עם משימות יומיות, ליווי אישי וקבוצות זום
🤖

עוזר הקורסים החכם

אני כאן לעזור לך למצוא את הקורס המתאים

×
👋 שלום! אשמח לעזור לך
שלום, אשמח לעזור לך להתמצא באתר ולמקד אותך לצורך שלך. נתחיל בבחירה:
🎓 מתמטיקה לבגרות
📚 אקדמיה (סטטיסטיקה / כלכלה / מתמטיקה)
0 / 40 הושלמו