מצב תצוגה מקדימה - הירשמי כדי לקבל שאלות עם מספרים משתנים ומעקב התקדמות! הרשמה חינם
אורח מצב צפייה מבחן: סדרה חשבונית - חישוב סכום Sₙ

סדרה חשבונית - חישוב סכום Sₙ

מציאת סכום n איברים ראשונים

בדיקה מיידית הסברים מלאים חינם לחלוטין מותאם לנייד
מספר שאלות: 40
ניקוד כולל: 100 נק'
רוצה לבחור רמת קושי? הירשם בחינם ותוכל לבחור בין בסיסי, בינוני ומתקדם
שאלה 1
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 4\)
• ההפרש: \(d = 1\)

מצא את סכום 10 האיברים הראשונים \(S_{10}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{10} = \frac{10(2 \cdot 4 + (10-1) \cdot 1)}{2}\)

\(S_{10} = \frac{10(8 + 9)}{2}\)

\(S_{10} = \frac{10 \cdot 17}{2} = \frac{170}{2} = 85\)
התשובה: 85
שאלה 2
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 5\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 3 + (19-1) \cdot 5)}{2}\)

\(S_{19} = \frac{19(6 + 90)}{2}\)

\(S_{19} = \frac{19 \cdot 96}{2} = \frac{1824}{2} = 912\)
התשובה: 912
שאלה 3
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 1\)

מצא את סכום 9 האיברים הראשונים \(S_{9}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{9} = \frac{9(2 \cdot 7 + (9-1) \cdot 1)}{2}\)

\(S_{9} = \frac{9(14 + 8)}{2}\)

\(S_{9} = \frac{9 \cdot 22}{2} = \frac{198}{2} = 99\)
התשובה: 99
שאלה 4
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 4\)

מצא את סכום 11 האיברים הראשונים \(S_{11}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{11} = \frac{11(2 \cdot 5 + (11-1) \cdot 4)}{2}\)

\(S_{11} = \frac{11(10 + 40)}{2}\)

\(S_{11} = \frac{11 \cdot 50}{2} = \frac{550}{2} = 275\)
התשובה: 275
שאלה 5
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 1\)
• ההפרש: \(d = 2\)

מצא את סכום 18 האיברים הראשונים \(S_{18}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{18} = \frac{18(2 \cdot 1 + (18-1) \cdot 2)}{2}\)

\(S_{18} = \frac{18(2 + 34)}{2}\)

\(S_{18} = \frac{18 \cdot 36}{2} = \frac{648}{2} = 324\)
התשובה: 324
שאלה 6
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 5\)

מצא את סכום 16 האיברים הראשונים \(S_{16}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{16} = \frac{16(2 \cdot 5 + (16-1) \cdot 5)}{2}\)

\(S_{16} = \frac{16(10 + 75)}{2}\)

\(S_{16} = \frac{16 \cdot 85}{2} = \frac{1360}{2} = 680\)
התשובה: 680
שאלה 7
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 5\)

מצא את סכום 15 האיברים הראשונים \(S_{15}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{15} = \frac{15(2 \cdot 5 + (15-1) \cdot 5)}{2}\)

\(S_{15} = \frac{15(10 + 70)}{2}\)

\(S_{15} = \frac{15 \cdot 80}{2} = \frac{1200}{2} = 600\)
התשובה: 600
שאלה 8
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 5\)

מצא את סכום 14 האיברים הראשונים \(S_{14}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{14} = \frac{14(2 \cdot 5 + (14-1) \cdot 5)}{2}\)

\(S_{14} = \frac{14(10 + 65)}{2}\)

\(S_{14} = \frac{14 \cdot 75}{2} = \frac{1050}{2} = 525\)
התשובה: 525
שאלה 9
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 5\)

מצא את סכום 16 האיברים הראשונים \(S_{16}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{16} = \frac{16(2 \cdot 5 + (16-1) \cdot 5)}{2}\)

\(S_{16} = \frac{16(10 + 75)}{2}\)

\(S_{16} = \frac{16 \cdot 85}{2} = \frac{1360}{2} = 680\)
התשובה: 680
שאלה 10
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 4\)

מצא את סכום 16 האיברים הראשונים \(S_{16}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{16} = \frac{16(2 \cdot 7 + (16-1) \cdot 4)}{2}\)

\(S_{16} = \frac{16(14 + 60)}{2}\)

\(S_{16} = \frac{16 \cdot 74}{2} = \frac{1184}{2} = 592\)
התשובה: 592
שאלה 11
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 6\)
• ההפרש: \(d = 4\)

מצא את סכום 17 האיברים הראשונים \(S_{17}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{17} = \frac{17(2 \cdot 6 + (17-1) \cdot 4)}{2}\)

\(S_{17} = \frac{17(12 + 64)}{2}\)

\(S_{17} = \frac{17 \cdot 76}{2} = \frac{1292}{2} = 646\)
התשובה: 646
שאלה 12
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 5\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 7 + (19-1) \cdot 5)}{2}\)

\(S_{19} = \frac{19(14 + 90)}{2}\)

\(S_{19} = \frac{19 \cdot 104}{2} = \frac{1976}{2} = 988\)
התשובה: 988
שאלה 13
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 2\)

מצא את סכום 10 האיברים הראשונים \(S_{10}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{10} = \frac{10(2 \cdot 3 + (10-1) \cdot 2)}{2}\)

\(S_{10} = \frac{10(6 + 18)}{2}\)

\(S_{10} = \frac{10 \cdot 24}{2} = \frac{240}{2} = 120\)
התשובה: 120
שאלה 14
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 9\)
• ההפרש: \(d = 5\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 9 + (19-1) \cdot 5)}{2}\)

\(S_{19} = \frac{19(18 + 90)}{2}\)

\(S_{19} = \frac{19 \cdot 108}{2} = \frac{2052}{2} = 1026\)
התשובה: 1026
שאלה 15
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 1\)
• ההפרש: \(d = 1\)

מצא את סכום 17 האיברים הראשונים \(S_{17}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{17} = \frac{17(2 \cdot 1 + (17-1) \cdot 1)}{2}\)

\(S_{17} = \frac{17(2 + 16)}{2}\)

\(S_{17} = \frac{17 \cdot 18}{2} = \frac{306}{2} = 153\)
התשובה: 153
שאלה 16
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 9\)
• ההפרש: \(d = 1\)

מצא את סכום 14 האיברים הראשונים \(S_{14}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{14} = \frac{14(2 \cdot 9 + (14-1) \cdot 1)}{2}\)

\(S_{14} = \frac{14(18 + 13)}{2}\)

\(S_{14} = \frac{14 \cdot 31}{2} = \frac{434}{2} = 217\)
התשובה: 217
שאלה 17
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 4\)

מצא את סכום 12 האיברים הראשונים \(S_{12}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{12} = \frac{12(2 \cdot 3 + (12-1) \cdot 4)}{2}\)

\(S_{12} = \frac{12(6 + 44)}{2}\)

\(S_{12} = \frac{12 \cdot 50}{2} = \frac{600}{2} = 300\)
התשובה: 300
שאלה 18
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 6\)
• ההפרש: \(d = 1\)

מצא את סכום 17 האיברים הראשונים \(S_{17}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{17} = \frac{17(2 \cdot 6 + (17-1) \cdot 1)}{2}\)

\(S_{17} = \frac{17(12 + 16)}{2}\)

\(S_{17} = \frac{17 \cdot 28}{2} = \frac{476}{2} = 238\)
התשובה: 238
שאלה 19
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 8\)
• ההפרש: \(d = 5\)

מצא את סכום 10 האיברים הראשונים \(S_{10}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{10} = \frac{10(2 \cdot 8 + (10-1) \cdot 5)}{2}\)

\(S_{10} = \frac{10(16 + 45)}{2}\)

\(S_{10} = \frac{10 \cdot 61}{2} = \frac{610}{2} = 305\)
התשובה: 305
שאלה 20
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 5\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 7 + (19-1) \cdot 5)}{2}\)

\(S_{19} = \frac{19(14 + 90)}{2}\)

\(S_{19} = \frac{19 \cdot 104}{2} = \frac{1976}{2} = 988\)
התשובה: 988
שאלה 21
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 5\)

מצא את סכום 11 האיברים הראשונים \(S_{11}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{11} = \frac{11(2 \cdot 3 + (11-1) \cdot 5)}{2}\)

\(S_{11} = \frac{11(6 + 50)}{2}\)

\(S_{11} = \frac{11 \cdot 56}{2} = \frac{616}{2} = 308\)
התשובה: 308
שאלה 22
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 5\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 5 + (19-1) \cdot 5)}{2}\)

\(S_{19} = \frac{19(10 + 90)}{2}\)

\(S_{19} = \frac{19 \cdot 100}{2} = \frac{1900}{2} = 950\)
התשובה: 950
שאלה 23
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 2\)

מצא את סכום 12 האיברים הראשונים \(S_{12}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{12} = \frac{12(2 \cdot 5 + (12-1) \cdot 2)}{2}\)

\(S_{12} = \frac{12(10 + 22)}{2}\)

\(S_{12} = \frac{12 \cdot 32}{2} = \frac{384}{2} = 192\)
התשובה: 192
שאלה 24
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 9\)
• ההפרש: \(d = 2\)

מצא את סכום 16 האיברים הראשונים \(S_{16}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{16} = \frac{16(2 \cdot 9 + (16-1) \cdot 2)}{2}\)

\(S_{16} = \frac{16(18 + 30)}{2}\)

\(S_{16} = \frac{16 \cdot 48}{2} = \frac{768}{2} = 384\)
התשובה: 384
שאלה 25
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 5\)
• ההפרש: \(d = 3\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 5 + (19-1) \cdot 3)}{2}\)

\(S_{19} = \frac{19(10 + 54)}{2}\)

\(S_{19} = \frac{19 \cdot 64}{2} = \frac{1216}{2} = 608\)
התשובה: 608
שאלה 26
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 3\)

מצא את סכום 18 האיברים הראשונים \(S_{18}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{18} = \frac{18(2 \cdot 7 + (18-1) \cdot 3)}{2}\)

\(S_{18} = \frac{18(14 + 51)}{2}\)

\(S_{18} = \frac{18 \cdot 65}{2} = \frac{1170}{2} = 585\)
התשובה: 585
שאלה 27
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 3\)

מצא את סכום 16 האיברים הראשונים \(S_{16}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{16} = \frac{16(2 \cdot 7 + (16-1) \cdot 3)}{2}\)

\(S_{16} = \frac{16(14 + 45)}{2}\)

\(S_{16} = \frac{16 \cdot 59}{2} = \frac{944}{2} = 472\)
התשובה: 472
שאלה 28
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 1\)
• ההפרש: \(d = 3\)

מצא את סכום 9 האיברים הראשונים \(S_{9}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{9} = \frac{9(2 \cdot 1 + (9-1) \cdot 3)}{2}\)

\(S_{9} = \frac{9(2 + 24)}{2}\)

\(S_{9} = \frac{9 \cdot 26}{2} = \frac{234}{2} = 117\)
התשובה: 117
שאלה 29
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 5\)

מצא את סכום 15 האיברים הראשונים \(S_{15}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{15} = \frac{15(2 \cdot 3 + (15-1) \cdot 5)}{2}\)

\(S_{15} = \frac{15(6 + 70)}{2}\)

\(S_{15} = \frac{15 \cdot 76}{2} = \frac{1140}{2} = 570\)
התשובה: 570
שאלה 30
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 9\)
• ההפרש: \(d = 5\)

מצא את סכום 8 האיברים הראשונים \(S_{8}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{8} = \frac{8(2 \cdot 9 + (8-1) \cdot 5)}{2}\)

\(S_{8} = \frac{8(18 + 35)}{2}\)

\(S_{8} = \frac{8 \cdot 53}{2} = \frac{424}{2} = 212\)
התשובה: 212
שאלה 31
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 3\)

מצא את סכום 13 האיברים הראשונים \(S_{13}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{13} = \frac{13(2 \cdot 7 + (13-1) \cdot 3)}{2}\)

\(S_{13} = \frac{13(14 + 36)}{2}\)

\(S_{13} = \frac{13 \cdot 50}{2} = \frac{650}{2} = 325\)
התשובה: 325
שאלה 32
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 4\)

מצא את סכום 19 האיברים הראשונים \(S_{19}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{19} = \frac{19(2 \cdot 3 + (19-1) \cdot 4)}{2}\)

\(S_{19} = \frac{19(6 + 72)}{2}\)

\(S_{19} = \frac{19 \cdot 78}{2} = \frac{1482}{2} = 741\)
התשובה: 741
שאלה 33
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 3\)

מצא את סכום 9 האיברים הראשונים \(S_{9}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{9} = \frac{9(2 \cdot 7 + (9-1) \cdot 3)}{2}\)

\(S_{9} = \frac{9(14 + 24)}{2}\)

\(S_{9} = \frac{9 \cdot 38}{2} = \frac{342}{2} = 171\)
התשובה: 171
שאלה 34
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 7\)
• ההפרש: \(d = 3\)

מצא את סכום 18 האיברים הראשונים \(S_{18}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{18} = \frac{18(2 \cdot 7 + (18-1) \cdot 3)}{2}\)

\(S_{18} = \frac{18(14 + 51)}{2}\)

\(S_{18} = \frac{18 \cdot 65}{2} = \frac{1170}{2} = 585\)
התשובה: 585
שאלה 35
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 2\)

מצא את סכום 11 האיברים הראשונים \(S_{11}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{11} = \frac{11(2 \cdot 3 + (11-1) \cdot 2)}{2}\)

\(S_{11} = \frac{11(6 + 20)}{2}\)

\(S_{11} = \frac{11 \cdot 26}{2} = \frac{286}{2} = 143\)
התשובה: 143
שאלה 36
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 6\)
• ההפרש: \(d = 1\)

מצא את סכום 15 האיברים הראשונים \(S_{15}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{15} = \frac{15(2 \cdot 6 + (15-1) \cdot 1)}{2}\)

\(S_{15} = \frac{15(12 + 14)}{2}\)

\(S_{15} = \frac{15 \cdot 26}{2} = \frac{390}{2} = 195\)
התשובה: 195
שאלה 37
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 8\)
• ההפרש: \(d = 1\)

מצא את סכום 13 האיברים הראשונים \(S_{13}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{13} = \frac{13(2 \cdot 8 + (13-1) \cdot 1)}{2}\)

\(S_{13} = \frac{13(16 + 12)}{2}\)

\(S_{13} = \frac{13 \cdot 28}{2} = \frac{364}{2} = 182\)
התשובה: 182
שאלה 38
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 4\)
• ההפרש: \(d = 5\)

מצא את סכום 11 האיברים הראשונים \(S_{11}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{11} = \frac{11(2 \cdot 4 + (11-1) \cdot 5)}{2}\)

\(S_{11} = \frac{11(8 + 50)}{2}\)

\(S_{11} = \frac{11 \cdot 58}{2} = \frac{638}{2} = 319\)
התשובה: 319
שאלה 39
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 3\)
• ההפרש: \(d = 2\)

מצא את סכום 13 האיברים הראשונים \(S_{13}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{13} = \frac{13(2 \cdot 3 + (13-1) \cdot 2)}{2}\)

\(S_{13} = \frac{13(6 + 24)}{2}\)

\(S_{13} = \frac{13 \cdot 30}{2} = \frac{390}{2} = 195\)
התשובה: 195
שאלה 40
2.50 נק'
📊 סדרה חשבונית:

נתונה סדרה חשבונית שבה:
• האיבר הראשון: \(a_1 = 2\)
• ההפרש: \(d = 1\)

מצא את סכום 8 האיברים הראשונים \(S_{8}\).
הסבר:
פתרון - סדרה חשבונית:

📝 נוסחאות חשובות:
\(a_n = a_1 + (n-1) \cdot d\)
\(S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}\)
🔢 פתרון:
נשתמש בנוסחה: \(S_n = \frac{n(2a_1 + (n-1)d)}{2}\)

\(S_{8} = \frac{8(2 \cdot 2 + (8-1) \cdot 1)}{2}\)

\(S_{8} = \frac{8(4 + 7)}{2}\)

\(S_{8} = \frac{8 \cdot 11}{2} = \frac{88}{2} = 44\)
התשובה: 44
🎓
לא רוצה להישאר לבד עם החומר?
הצטרפו לקורס שנתי עם משימות יומיות, ליווי אישי וקבוצות זום
🤖

עוזר הקורסים החכם

אני כאן לעזור לך למצוא את הקורס המתאים

×
👋 שלום! אשמח לעזור לך
שלום, אשמח לעזור לך להתמצא באתר ולמקד אותך לצורך שלך. נתחיל בבחירה:
🎓 מתמטיקה לבגרות
📚 אקדמיה (סטטיסטיקה / כלכלה / מתמטיקה)
0 / 40 הושלמו